- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001100001000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Fountalis, Ilias (3)
-
Vasiloglou, Nikolaos (3)
-
Hu, Yaojie (2)
-
Tian, Jin (2)
-
Kayali, Moe (1)
-
Lykov, Anton (1)
-
Olteanu, Dan (1)
-
Suciu, Dan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Bez, Jean (2)
-
Boukhobza, Jalil (2)
-
Byna, Suren (2)
-
Cuzzocrea, Alfredo (2)
-
Dai, Dong (2)
-
Kougkas, Anthony (2)
-
Neuwirth, Sarah (2)
-
Vishwanath, Venkat (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Byna, Suren; Kougkas, Anthony; Neuwirth, Sarah; Vishwanath, Venkat; Boukhobza, Jalil; Cuzzocrea, Alfredo; Dai, Dong; Bez, Jean (Ed.)Free, publicly-accessible full text available June 22, 2026
-
Hu, Yaojie; Fountalis, Ilias; Tian, Jin; Vasiloglou, Nikolaos (, The International Conference on Scalable Scientific Data Management 2025)Byna, Suren; Kougkas, Anthony; Neuwirth, Sarah; Vishwanath, Venkat; Boukhobza, Jalil; Cuzzocrea, Alfredo; Dai, Dong; Bez, Jean (Ed.)Free, publicly-accessible full text available June 22, 2026
-
Kayali, Moe; Lykov, Anton; Fountalis, Ilias; Vasiloglou, Nikolaos; Olteanu, Dan; Suciu, Dan (, Proceedings of the VLDB Endowment)We apply foundation models to data discovery and exploration tasks. Foundation models are large language models (LLMS) that show promising performance on a range of diverse tasks unrelated to their training. We show that these models are highly applicable to the data discovery and data exploration domain. When carefully used, they have superior capability on three representative tasks: table-class detection, column-type annotation and join-column prediction. On all three tasks, we show that a foundation-model-based approach outperforms the task-specific models and so the state of the art. Further, our approach often surpasses human-expert task performance. We investigate the fundamental characteristics of this approach including generalizability to several foundation models and the impact of non-determinism on the outputs. All in all, this suggests a future direction in which disparate data management tasks can be unified under foundation models.more » « less
An official website of the United States government
